一文看懂光谱共焦传感器的前世今生
1.共聚焦传感器测量技术发展历史
随着精密制造业的发展,对精密测量技术的要求越来越高。位移测量技术作为几何量精密测量的基础,不仅需要超高测量精度,而且需要对环境和材料的广泛适应性,并且逐步趋于实时、无损检测。与传统接触式测量方法相比,共聚焦传感器具有高速度,高精度,高适应性等明显优势。
1940年,眼科医生Hans Goldmann在瑞士伯尔尼发明了裂隙灯系统,用于眼科检查。这个眼科检测系统被认为是共聚焦传感器测量系统的雏形。
1943年,Zyun Koana 发表了共聚焦传感器测量系统设计图,图中明确展示了共聚焦测量系统的传输光路。
1951年,Hiroto Naora, Koana的同事, 在科学杂志撰文描述了共聚焦分光光度法。
1955年,Marvin Minsky制造出了首台共聚焦显微镜,并于1957年申请了专利
1960年,捷克斯洛伐克查尔斯大学医学专业的Mojmír Petráň开发出了首款串联扫描共聚焦测量系统,被认为是首款商业化的同类系统。
2006年,德国米铱公司推出全球最小直径共聚焦传感器探头,为精密位移测量任务提供了新的选择。
2.共聚焦传感器测量原理
光谱共焦位移传感器是一种通过光学色散原理建立距离与波长间的对应关系,利用光谱仪解码光谱信息,从而获得位置信息的装置,如图 1 所示,白光LED 光源发出的光通过光纤耦合器后可以近似看作点光源,经过准直和色散物镜聚焦后发生光谱色散,在光轴上形成连续的单色光焦点,且每一个单色光焦点到被测物体的距离都不同。当被测物处于测量范围内某一位置时,只有某一波长的光聚焦在被测面上,该波长的光由于满足共焦条件,可以从被测物表面反射回光纤耦合器并进入光谱仪,而其他波长的光在被测物面表面处于离焦状态,反射回的光在光源处的分布远大于光纤纤芯直径,所以大部分光线无法进入光谱仪。通过光谱仪解码得到光强最大处的波长值,从而测得目标对应的距离值。由于采用了共焦技术,因此该方法具有良好的层析特性,提高了分辨力,并且对被测物特性和杂散光不敏感。
3.共聚焦传感器的结构设计
在光谱共焦位移传感器系统中,系统的测量范围受4个方面的因素影响:1)光源光谱分布范围;2)色散镜头在工作波段范围内的轴向色差;3)光谱仪的工作波段;4)光纤耦合器的工作波段。选择的白光LED 光源的光谱分布如图2所示,波段 400~800 nm,所以在设计过程中,色散镜头、光谱仪和光纤耦合器的工作波段要尽量与光源的波段一致,最终系统的测量范围为色散物镜在其共同工作波段范围内的轴向色差。
在设计色散镜头时,除了要考虑其轴向色差外,还要考虑如下因素:1)增大物方数值孔径可以提高分辨率;2)增大像方数值孔可以提高光源利用率;3)减小系统球差可以提高精度;4)系统结构要易于装配和调整。
以上这些因素是相互制约的,增大数值孔径的同时系统球差也随之变大,如果要校正球差系统,结构就会变得复杂,所以色散镜头设计的目的是用最少的透镜达到最理想的效果。光谱共焦位移传感器的光学系统可以看成两个部分,一部分是消色差场镜,它的焦点在光源处,把点光源准直成平行光,另一部分为色散物镜,它的作用是把不同波长的平行光聚焦在轴上的不同位置,形成光谱色散,而消色差透镜和非球面透镜正好可以起到这样的作用。本文采用了美国 thorlabs 公司的消色差和非球面透镜组合,色散镜头设计如图 3 所示。并选择在光源波段范围内耦合效率较高的光纤耦合器和分辨率为0.5nm的光谱仪,具体元件及参数如表 1 所示。
通过 ZEMAX 软件仿真分析,在 400~700 nm 波段色散镜头的色散范围为 2.3 mm,具体波长与聚焦位置的对应关系如图 4所示。
由于系统要分析反射回光纤的光谱光强分布情况,所以对共焦过程进行了模拟,在仿真过程中,将平面镜置于焦面处,使通过光学系统的光经过平面镜反射后又回到光学系统,并成像在光源位置。通过观察像面处的点列图发现,当平面镜设置在不同波长的焦面处时,聚焦波长在像面处的弥散斑较小,而其他波长的弥散斑较大。
图5 为平面镜设置在 550 nm 波长焦面处时像面上的点列图,其中 550 nm 波长的弥散斑直径为41.4 μm,小于光纤纤芯直径,而 400 nm 波长的弥散斑直径为 2 311.46 μm,远大于光纤纤芯直径。为了更准确地分析光纤纤芯直径对共焦系统的滤光情况,将光纤端面离散为间距 1 nm 的均匀分布点光源,并假设弥散斑与光纤纤芯重叠的部分为可以进入光纤的光。
图 6 为在此条件下计算的平面镜设置在 450,500,550,600,650 nm 焦面处时,反射回光纤的光谱光强分布。从图中可以看出光纤纤芯直径起到了较好的滤光作用,而且随着波长的变大半高宽变大。分析了不同光纤纤芯直径情况下反射回光纤的光谱光强分布情况,图 7 为对反射镜设置在 550 nm 焦面处分析的结果,可以看出当光纤纤芯直径较小时,光谱信号能量较弱,随着光纤纤芯直径的增大,光谱信号能量变强但半高宽也变大,分辨率下降。设计中必须选取合适的光纤,同时满足系统的分辨率和信噪比要求。
1.共聚焦传感器信号数据处理
光谱信息处理的最终目的是为了得到峰值波长,但是光纤耦合器的内部回光、光源光强分布的不均匀、CCD 对不同波长光响应程度的不同、系统的噪声等因素都会对谱峰定位造成影响,需要进行预处理后再用适当的算法提取峰值波长。
在光谱仪中得到的光谱信息包括光纤内部返回的背景光和从被测物表面返回的信号光。为了得到有用的信号光,首先需要对背景光进行采集,然后从光谱仪得到的数据中减去背景光。此外还要考虑光源光谱光强分布不均匀的影响。图 8 为在图 6 的基础上加入光源光谱特性后的光谱光强分布图,从图中可以看出峰值波长发生了偏移,所以需要对光源光强进行归一化处理。另外由于传感器在各个环节都会产生随机噪声,所以需要进行光谱去噪,常用的光谱去噪方法有中值滤波、小波函数滤波等,比较了不同的滤波方法后,最终选择了用 db6 小波进行 6 次分解强制消噪,因为经过其滤波处理后谱峰定位的重复性较好。
由于光谱仪中 CCD 像元有一定尺寸,相当于对原始的光谱进行了离散采样,所以可能会出现漏峰的情况。如果使用原始光谱数据中的最大值作为峰值波长会影响定位的精度,因此需要选用合适的算法对谱峰位置进行确定。质心法是常用的峰值定位算法,适用于处理关于峰值位置对称的光点信号,质心法公式为
2.共聚焦传感器主要参数和优势
德国米铱公司confocalDT IFC 2461控制器参数表
IFS2405系列共聚焦传感器探头参数
IFS2405系列共聚焦传感器探头尺寸
光谱共焦位移传感器与激光位移传感器的对比:
激光三角反射法位移传感器光谱共焦位移传感器(色散位移传感器)遮挡阴影的影响
高度变化映射到传感器像位移,根据三角函数计算出高度距离。图中阴影部分是测量盲区。
光线是从四面八方照射过来的,即使大部分的光线被阻挡,只要有一小部分返回,照样可以测量,甚至能测量其它方法无法测量的小孔和槽底部。一个光谱共焦传感器可以起4个从不同方向照射的激光位移传感器的作用。透明体和镜面被测物的影响
激光光斑可能在透明被测物表面发生透射,在被测物内部产生光晕,从而导致激光位移传感器测量偏差。另一方面,激光位移传感器需要光斑在被测物表面形成漫反射,在一个倾斜角度上收集回光。而对于镜面反射被测物,能够进入侧面收光器的光线很少,可能导致测量困难,需要倾斜安装或使用镜面检测专用激光位移传感器。
半透明材质光斑周围的漫反射光被小孔阻挡无法返回到光谱分析仪,不会影响测量。这种方法和全息原理相似,理论上每一束经过小孔返回的光都携带了距离信息,透明表面或镜面也会反射一部分光回去,所以透明材质也可以测量。采用同轴检测,发射光和返回光在同一轴线上,避免因全反射导致的回光不足问题。光谱共焦传感器可以用于检测镜面被测物。镜面物体大角度测量的影响
当镜面被测物边沿有很大倾斜角度时(如手机3D玻璃边沿),激光三角反射法位移传感器的回光可能发生很大角度的反射,导致侧向收光器回光很少,无法测量。
在比较大的弯曲或倾斜角度内,只要有一小部分光返回,就可以完成测量任务。不需要倾斜安装或使用镜面反射特殊型号位移传感器,减少了传感器品种数和安装难度,大大提高使用效率。光斑大小的影响
激光三角反射式位移传感器只有在聚焦点光斑最小,离开聚焦点后光斑都会变大。对于测量微小结构的测量任务,可能会带来测量困难。
在量程范围内,测量有效波长的光永远都在焦点上,可以全量程保持分辨率和精度。因此光谱共焦位移传感器特别适合测量微小几何结构和轮廓变化。
光谱共焦传感器应用领域:
共焦传感器多层厚度测量
共焦传感器医疗器械测量
共焦传感器液面测量
共焦传感器PCB板检测
共焦传感器光刻机定位
共焦传感器手机行业检测
共焦传感器测量曲面玻璃
共焦传感器测量深孔内部
Hash:b95bac824c7e59e3759758c123f2ccac44e7e274
声明:此文由 德国米铱 分享发布,并不意味本站赞同其观点,文章内容仅供参考。此文如侵犯到您的合法权益,请联系我们 kefu@qqx.com